
" paper no.

-kU.,THE AMERICAN SOCIETY OF 56-A--112

MECHANICAL ENGINEERS
29 WEST 39T H STREET * NEW YORK 1 8 N. Y.

AD-A284 484I IIIJrIIi llhill1111iIIHIH II JIMII 0

NEW FINITE-DIFFERENCE TECHNIQUE FOR SOLUTZION OF THE HEAT-CONDUCTION
EQUATION, ESPECIALLY NEAR SURFACES WITH CONVECTIVE HEAT TRANSFER

ELEC]£ . H. G. Elrod, Jr., Assoc. Member ASME

Assoc. Prof., Mech. Engrg.,

j,' UL 2 ? I94 Colunbia University
S'4• New York, N. Y.

F

This do rL'en1 EC3 teen approved
for public release and s-.ae; it
dFtributi:a i! ,.: itei i

Contributed by the Heat Transfer Division for presentation at the ASME Annual

Meeting, New York, N. Y., November 25-30, 1956. (Manuscript received at ASME

Ifeadquarters --j'1y 31, 1956.)

Written discussion on this paper will be accepted up to January 10, 1957.

(J~ (Copies will be available until October 1, 1957)

Q 3
'---03202-56

The Society shall not be rr-po-nsble fo. statemen,, or opminons advanced .n papers or

on descusoion oa nt,.. •fle of the $ociety or of *of ODosons or Sections. or printed in
its pubhovion.

DeciMon on publication of this paper in an ASME journal had
Released for general pubti- not been taken when this pamphlet was prepared. Discussion
cation upon presentation Is printed only If the paper Is published In an ASME journal.

Printed In U. S. A.



ABSTRACT

Finite-differenoe methods have come inro wide use for solving

special problems Including transient-heat conduction, DusmnberreI

has ably presented the possibilities of finite-difference methods.

The success of most such methods depends on the existence of a

certain degree of uniformity of behavior of the temperature over the

finite intervals of both space and time selected for the computation

process. In some cases, however, this required uniformity constItutes

a handicap since temperatures are changing so rapidly that incon-

veniently short time intervals have to be chosen. Tnis paper repre-

sents an effort to develop a finite-difference method free from the

foregoing defect.

*1 "Numerical Analysis of Heat Flow," by G. M. Dusinberre,

McGraw-Hill Book Company, Inc., New lork. N. Y., 1949.



NEW FINITE-DIFFERENCE TECHNIQUE FOR SOLUTION OF THE HEAT-CONDUCTION
EQUATION, ESPECIALLY NEAR SURFACES WITH CONVECTIVE HEAT TRANSFER

By H. G. Elrod, Jr.

TABLE OF SYMBCLS

A temperature influence coefficient defined in eq. 26
B temperature influence coefficient defined in eq. 26

C temperature influence coefficient defined in eq. 26

C1 (O,t) and c2 (O,t) contributions to the temperature at x = 0

from the regions xO and x<O, respectively.

D temperature influence coefficient defined in eq. 26

E temperature influence coefficient defined in eq. 26

f 'function of"

fr "rth derivative of"

Fu n heat-conduction function defined by eqs. 43 and 44, ft-n

F * heat-conduction function defined by eq. 78Fn

G n heat-conduction function defined by eq. 52

h convective heat-transfer coefficient, Btu/hr ft 2 F

A the ratio, (h)/k, as used in ref. 2, ft- 1

Hn heat-conduction function defined by eq. 53 Acceýýicn For 1 -

I integral defined by eqs. 58, 59, and 60,F. NTIS CRA&B'i DTIC TAB

k thermal conductivity, Btu/hr ft *F Un.innouced L-

M heat-condution modulus, (Ax) 2 /LAt Justification -------

By
N heat-conduction Nusselt number, (h_ Ax)/k D'-1i"ri bb-,oni -...... .. ..

t time, hr Av3dlatifity Coot
eF Ava, •, :7

T temperature, F Dist .

x distance in one-dimensional medium, ft -(

x dummy space variable, ft I _

S'*finite difference of*



O

6 base of natural logarithms, 2.718

, dummy variables

K thermal diffusivity, ft 2 /hr

7 dummy time variable, hr

# function describing the ambient temperature, *F

Numerical subscripts ap'lIed to temperatures, as in

T1 , T0 , T 1 , refer to temperatures located at x = x,

x = 0, and x = -Ax, etc., at the time t = 0.

Positive and negative superscripts applied to temperatures,

mean that the temperatures are to be evaluated at the plus and

minus sides of the points in question.

Introduction:

In recent years finite-difference methods have been used

to solve a vast number of special problems involving transient

heat conduction. In flexibility of use and simplicity of con-

cept these methods excel those of classical mathematical analysis,

and, indeed, on many occasions they are not to be regarded as

substitutes for more precise methods, but as thb only possible

methods to use. The possibilities of finite-difference methods

for many problems akin to those considered in this paper are

well presented in the book by Dusinberre

The success of most finite-difference methods depends on

the existence of a certain degree of uniformity of behavior of

the temperature over the finite intervals of both space and time

selected for the computation process. There are, however, a

number of occasions when this requirement of uniformity is a

handicap, since temperatures are changing so rapidly that Incon-



ventently-short time intervals have to be chosen. This awkward

feature usually arises near the boundary of the computation

region; for example, it may arise near the surface of a casting

during quenching.

The present investigation represents an effort to develop

a finite-difference method free from the foregoing defect.

Formulas are derived which do not imply a uniformity of behavior

with respect to time. Within the interior of a solid, these

formulas reduce, in general, to those obtainable by the simpler

technique of heat balances. However, near a convective heat-

transfer surface they do not reduce to earlier formulas. In

this region they possess greater potentiality, in that they

will handle with uniform precision cases of variable, and even

discontinuous, ambient temperature, with the heat-transfer

coefficient ranging from zero (insulation) to infinity (perfect

contact.)

In actual practice, the new formulas merely introduce new

weighting factors Into the standard finite-difference equations.

A numerical table of such weighting factors is given for the

temperatures on, and adjacent to, a convective heat-transfer

surface when the space and time intervals are chosen to conform

with the Binder-Schmidt selection of M = (t6x) 2 /KAt = 2.

Derivation of Formulas for the Infinite Medium:

Formulas will here be derived which are appropriate for

use in computing the transient conduction of heat in an infin-

ite medium of uniform, constant properties. The differential

equation to be applied is as follows:

T = 2 T__ (1)

This is a linear differential equation, and the response at



some time "t" is linearly related to the temperature distribu-

tion input "f(x)" at time zero by the solution given below2 .

T(x,t) -L= faE W- r x (2)

At the point x=O this last equation reduces to:

T4~t of~9 (3)

Now let the contribution to T(O,t) originating within the

region x•O be denoted by Cl(O,t). This contribution can be

written in the following manners:

or: 0 2

0

The integral in eq. 5 can be successively integrated by parts

to give:

C( ) 0 (0o)(A) 1 erlc.(o) +4,

f(o._c= k d4/
n+f0 Z-rk-) (6)2Y-)

where the Inerfc(•) are the iterated error functions defined

by: • _

ef fr) -- At (7)

and: 0(

i"edc (46) - fi"e ) &• ) d

The presumption in writing eq. 6 is that the first "n"

derivatives of f(x') are continuous on the plus side of x'=O.

These derivatives may, or may not, be continuous through

x'= 0. If they are continuous, then when the contribution

2
"Conduction of Heat in 'S'olids, by Car-slaw and Jaege,

Oxford University Press, 1947.



0 2 (0,t) is added to Cl(O,t), all odd temperature derivatives

cancel, leaving the following result for T(O,t).
o r r2,2m+1 '0020÷ 24#.1 .zM

When the last integral in eq. 9, which is the error term,

is neglected, and when use is made of the fact that:
2k-

e erIc (o) 4 •r( (0)

eq. 9 then reduces to: 1

T(o, t) = Ztr! (0) (11)
P-0

Thus when the temperature distribution in an infinite medium

conforms at t=O with some polynomial in "x", eq. 11 gives the

exact answer for all subsequent time. In terms of the modulus

"M" this equation becomes:

T(qt 0 AM4[(A x) (12)

where: r= 0

t= t-o = 6t (13)
Equation 13 is still not a convenient expression to use

numerically. An improvement can be made by evaluating the

derivatives in this expression in terms of discretely-spaced

temperatures with the uniform interval, 6x. Thus, for a

second-degree polynomial:

(x)2Of (o)= T (14)I

For higher-degree polynomials, the second and higher derivatives

take on more complicated, but similar, form. Substitution of

eqs. 14 into eq. 12 gives the standard finite-difference form,

widely used in heat-conduction studies. Thus:

T(O,,A 1) = + + (15)

The Special Case of M = T:

Equation 15 can be deduced very much more quickly by
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direct use of heat balances. In this case the ability of the

present, more elaborate analysis to accomodate non-uniform

time behavior is not made evident. To bring this ability into

evidence, let it be supposed now that at time zero neither

the temperature nor its derivatives is continuous through

x-•. Such a situation can arise physically when two plates

of similar material, but dissimilar temperatures, are suddenly

brought into good thermal contact. It obviously

includes as a special case the more usual situation analyzed

above.

In the present, more general case, C1 (Ot) and C2 (Ot)

must be evaluated separately. Now let it be assumed that the

temperature distributicn at t=O for x•O can be well represented

by a second-degree polynomial. Furthermore, let the tempera-

tures on the plus side of various stations be identified with

"plus" superscripts, and the temperatures on the minus side

with "minus* superscripts. Then:
S= To+*

Sj-_ _

#0(0) T0)

This last expression is valid readls of the temperature

distribution for x<O; that is, regardless of the magnitude of

the time derivatives induced by discontinuities at x=O.

Inspection of eq. 17 show6 that a rather remarkable

simplification occurs if Is, r. In this event, only the tem-

peratures T0 and T 1 need to be known in order to obtain exact
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results for an initial quadratic temperature profile. If

the profile for x<O is also quadratic, though different,

addition of the contributions C1 and C2 leads again to eq. 15,

provided the temperature T0 in that equation be interpreted as:

T_' 4(T7~ (18)%

Thus the new method of deducing the finite-difference equations

has brought out the unique property of M = n;

namely, that it can accomodate space discontinuities in the

temperature and its derivatives, if these discontinuities

occur at a central grid point.

Although the interpretation of T0 according to eq. 18

makes eq. 15 for M = TT highly accurate when a temperature-

Jump occurs at the central grid point, there remains the

problem of how to weight the temperatures at station 1, say,

if a temperature jump occurs there, instead. As before, let

the temperature profiles to the right and left of station 1

be quadratic, though different. Then C2 (O,t) can immediately

be written as:

On the ote 0hand,0(19
On the other hand, 0l(c,t) requires special treatment.

Let f (x ) be the smooth, or analytic, continuation

into the region x'ŽAx of the actual temperature profile

existing in the region x'<Ax. Then 0 1 (O,t) can be written

as: C;(~) ~ Jt' At~
f
0  0  

L

CIO

The first two integrals in this last equation can be summed

for M = r to give: [7- + 1T -7



The third integral might be integrated by parts, as on earlier

occasions, to yield a series. However, since such a procedure

would complicate any formula by introducing temperatures

beyond T1, it is not followed. Instead, the functional

difference f(x') - f (x') is treated as stationary compared

with the fast-attenuating exponential, and the last integral

is approximated by the following expression:

0jI5J (7 17) (21)

Combination of the foregoing results gives the complete

expression for 0I; i. e.0

qc,, t) [ I [ 2) + 7_j+o. o9T ,-77) (22

Since 0.1053 T = 0.331 = 1/3, the sum of C1+C2 can be

written with high accuracy as: 2 T-,T

7 ,f , i "7(23)

Comparison of eq. 23 with eq. 15 shows that the standard form

of eq. 15 can be retained if, when predicting T(O,At) with a

temperature jump at station 1 (x = Ax), the "inside" temperature

at the Jump is weighted twice as heavily as the "outside" tem-

perature. Or, in other words, T 1 in eq. 15 is to be interpreted2 T_ + T+ 2a
as: T1 = 1  1 (24a)

3

Put alternatively, the following extended form of eq. 15 yields

excellent accuracy when M = Tr and when the temperature profile

can be represented by second-degree curves in the intervals:

x<-Ax ;-4X --- ', 0 o<x 0 Ax ; x &A
Ths + T- 2T+

Tu: T(0,6 ) (T$ ) +( T_+~3  (24b)

To illustrate the practical use of the foregoing rules,

let us consider the following example. "A semi-infinite slab



(x0o) at a temperature of 100 degrees is sud~denly brought into

perfect tho.rmal contact with a second semi-infinite slab (x<O)

at a "-imperature of -100 degrees. The temperature distribution

for all time for x>0 is desirod."

The above example is solved in ref. I (p. 121) for

M = 2, 3 and 4. Table I of this paper shows the numerical results

obtained when M = Tv. For the chosen mathematical model,

exact values are shown in parentheses. At no tabulated

point does the absolute error of the finite-difference method

exceed 3.2/.

TABLE I

-Ax 0 AX 2 Ax _Ax 4Ax

0 -100 100 100 100 100

At 0 78.7 100 100 100
(79.0) (98.8)

2 At 0 60.5 93.3 100 100
(62.4) (92.3)

3At 0 51.7 85.0 97.9 100
(53.0) (85.2) (97.0)

It is interesting to note that the temperature at x=O

is, for the purposes of computing future temperatures at the

same point, taken as zero right from the start. However,

for purposes of computing future temperatures at station 1,

the initial temperature at x=O is, by eq. 24, to be taken

as: 2 x 100 + (-100) = 33.3 deg.

The major source of improvement of the present computational

accuracy over the cited examples in ref. I lies in the treat-

ment of temperatures at a point of discontinuity.

If automatic computing machinery is to be used for the

finite-difference computations, the selection of M = n should

introduce negligible inconvenience. However, for hand compu-
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tation the use of M = 3, a value quite close to Tr, would

appear to be preferable because of the simpler arithmetical

manipulations required. The rules given by eqs. 18 and 24

should be retained. In the foregoing example, use of M = 3

with these rules Increases the maximum error by only 0.39.

Formulas for the Neighborhood of a Convective Heat-Transfer
Surface:

The formulas obtained in the previous section are valid

for the infinite medium, or for finite regions which can be

mimicked by an infinite medium through the use of superposition

of symmetric and anti-symmetric temperature distributions. In

the general case of heat convection from a surface, however,

the heat transfer coefficient is usually neither so small that

heat transfer can be neglected, nor so large that perfect

thermal contact can be assumed. This general case does not,

unfortunately, lend itself readily to the superposition technique,

and special formulas are required. suitable formulas of high

accuracy will be given in this section. Their detailed derivation

is given in the Appendix, and, because no new principles are

involved, it will suffice here to summarize and illustrate the

results.

The short-term behavior of all slabs of finite thickness

is, with respect to changes at their surfaces, like that of

corresponding semi-infinite slabs. Accordingly, tVe results

obtained for the semi-infinite slab whose surface is exposed

to convective heat-transfer, can also be used for the finite

slab, so long asdtfor the time interval of computation is

n not too large. Consider, therefore, a semi-infinite solid

medium having uniform, constant properties. Within the solid
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the temperatures must obey Fourier's equation (eq. 1). At

the surface of the solid, cooling takes place according to

Newton's "Law" of Cooling; i. e.,

h(T T W)(25)

Now let the temperature within the solid at t = 0 be

expressible as a second-degree polynomial in "x" for all

"x" beyond the surface. Further, let the ambient temperature

between t = +0 and t =At - 0 be a linear function of time.

Then because of the linearity of the governing differential

equation and its boundary conditions, the temperatures T(C,At)

and T(Vx, At) can be linearly expressed in terms of T+, T 1 ,

T 2 , Ta(+O) and Ta(At - 0). The weighting factors for the

various temperatures are arrived at in a manner similar to

that used for the case of the infinite medium. The results

are: T(O,4t) = A0 0 + B0 T 1 + a0T 2 +,•)

D0 Ta(4+o) + EOTa(At - 0) (26)

T( Ax, At) = A To + B T1 + 0 T1~ 0 11 T12 ÷P-
DITa(+O) + E Ta(At - 0) (27)

The coefficients defined by eqs. 26 and 27 are given by the

following formulas:

Aj = -N F* - F* - N F * + J = 1#2 (28)
1 ~~ 11

B = 2F* - + 2N F * (29)
3 1 2 1 M 3=12(8

CF = -1 + -oN F " (30)3 2 M 3
D = N NM F " (31)

E = NM F " (32)

In these equations "N" is a Nusselt number defined by:

N = h_(Ax)/k (33)



The various F's are dependent on the choice of "J", and are

to be calculated by the following relations:,+ -jIi" ' 2

dv= 64+ (6 ePIC ) (34)

where: J-4'- + N (35)

* / ý-'I-vM +

~L~ICPF~r#7A (37)

The coefficients in eq. 26 and 27 are functions of

M, N and the position parameter, J. Their calculation in-

volves a fair amount of numerical work. However, for specific

and widely-used values of M,tables of these coefficients can

be prepared for universal use. One such table, for M = 2, is

given in the next section. (Table II) It occupies little

space, yet is suitable for linear interpolation over the

entire range of possible values of the heat transfer coefficient.

When such a table is available, use of the new coefficients

is very straightforward. Questions of stability do not arise,

and discontinuities of temperature in both space and time at

the surface are handled automatically.

r - grid points more than distance x from the surface, the

standard finite-difference formula appropriate to the chosen M

should be used. (See eq. 15). At a sacrifice of accuracy,

this formula can also be used to compute the temperature history

at x =Ax.
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The Special Case of M = 2:

To illustrate the capabilities of the new finite-difference

formulas, a table for M = 2 will now be given, and used to

solve typical problems. Table II gives the needed coefficients.

Equations 26 and 27 are repeated, making use of the table nearly

self-explanatory. The argument to be used in entering the

table is l/(N+l), which is +he r!.tio of the surface resistance

to the sum of the surface rs'ta' :s' 'us the resistance of

a slab of thick-ess,Ax. A s1%..le check which all such

tables must saticfy "a ta-" . 1-e coefficients for

any g'_-rn -"' :<lt 2fl:2+ , a l ÷34 tement must be true

can be seen from the frCt that if -ll temperatures within the

solid are the same as th" constant am!Týent temperature, the

temperatures at x = 0 and x =Ax must be the same at the end

of time At as at the beginning. When the ambient temperature

is constant, very often it can be used as the datum temperature

(i. e., taken as zero), and in this event the coefficients

Dj and Ej do not enter the computation.

Consider the following problem to illustrate the use of

the foregoing table. "A semi-infinite medium of uniform, con-

stant properties is everywhere at a temperature of 1000 degrees

at time zero. At this time convective cooling commences at

its exposed surface to an ambient temperature of 0 degrees. The

thermal properties of the medium are known, as well as the

value of the surface heat-transfer coefficient. Find the tem-

perature history within the slab."

This problem is solved by the new technique by selecting

first a size of space interval suitable for sampling the tem-



TABLE II

BOUNDARY INFLUEX0E CCiiFFIZIElfS FCR M =

T(O, t) = AoT + B + DoT (+0) + E T (at - 0)
0o 0T1 +C 0 T2 + 0 a o a

A B C D E
+000 0 0

0 0 0 0 0 1

0.1 0.0129 0.0480 0.0267 O.C672 0.8452

0.2 0.0334 0.1080 0.0474 0.1087 0.7C25

0.3 0.0609 0.1749 C.0628 C.1276 C.5738

0.4 O.C935 0.2438 0.0743 C.1292 0.4592

0.5 C.1290 0.3116 C.0826 0.1189 0.3579

0.6 0.1654 0.3765 0.0888 0.1C09 0.2684

0.7 0.2017 0.4375 C.0933 0.0783 0.1892

0.8 0.2370 0.4943 0.0967 0.C531 0.1189

0.9 0.2709 0.5471 0.0991 0.0266 C.0563

1.0 0.3032 0.5957 C.1CII 0 C

1

N+1 AI B1  1 1 1

0 0.1074 0.1507 0.4246 o.1666 0.1507

0.1 O.1256 0.1802 0.4248 0.1491 0.1203

0.2 0.1443 0.2074 0.4243 0.1286 0.0954

0.3 0.1624 0.2315 0.4234 0.1077 0.0750

0.4 0.1792 0.2527 0.4222 0.C877 0.0582

0.5 0.1944 0.2710 0.4212 0.0692 0.0442

0.6 o.2081 0.2869 0.4201 0.0524 0.0325

0.7 0.2204 0.3008 0.4191 0.0372 0.0225

0.8 C.2314 0.3130 0.4182 0.0235 0.0139

0.9 0.2414 0.3234 0.4176 C.0114 0.0062

1.0 0.2500 C.3333 0.4167 0 0



perature diat'tution in tile :,si fs c' irnter-est. The time

interval u t ;r be h:,en sc t..It M 2. Also, from the

space-interval selection, the surface Nusselt Number, N, can

be calculated. This last parameter determines the coefficients

which are read from Table II. In the present case, suppose

N = 1/2. Table III gives computed results for six time intervals

Certain exact results are given in parentheses to provide a

gauge of the computational accuracy. At no point of comparison

does the error of the finite-difference process exceed 0.7%.

TABLE III

Ta 0 Ax 2Ax 3 Ax 4 Ax 5 Ax 6 Ax

0 0 1000 1000 1000 1000 1000 100C 1000

At 0 699.2 932.4 100C 1000 i000 1000 1000
(699.2)

2At 0 613.8 847.1 966.2 10C0 100C 1000 1000
(615.7)

3At 0 558.9 789.2 923.6 983.1 10CO 1000 1000
(562.6)

46t 0 520.4 742.3 886.2 961.8 991.6 1000 1000
(523.2)

5At 0 490.1 704.4 852.0 938.9 98C.9 995.8 1000
(492.6)

66t 0 465.3 672.2 821.7 916.4 967.4 990.5 997.9
(467.2) (674.7) (822.9)

To assess the worth of the present adaptation of the

method of finite-differences, one must compare it with alterna-

tives. For example, as shown in ref. 1, p. 129, a heat-balance

at the surface, made on the assumption of constant temperature

gradients throughout one time interval, gives coefficients

equivalent in appltcation to the present A0 , Be and D.. The

formula is as follows:

T(,A) T + T2 + (N+1] T (39)
M a t 1 bt L e fr

It is to be used in conjunction with eq. 15 for all interior



1o

points. Dusinberre 1 shows that stability in the numerical cal-

culations requires that M be greater than 2(N+l) in eq. 39, and

greater than two in eq. 15. (Thus M=2 used in the above example

ip at the limit of stability of eq. 15 and beyond the limit of

stability of eq. 39.) When N = 1/2, M = 4 meets the foregoing

stability criteria, and this value of the modulus was used

with eqs. 15 and 39 to solve the example problem. Retention

of the same space interval meant the use of twice as many time

intervals to achieve the same real time; that is, twice as

many computation points were required. The error in this altern-

ative calculation was almost uniformly twice as great as in the

calculation tabulated in Table III.

To illustrate further the use of the table of coefficients,

two other problems will be solved for the first few time inter-

vals. As a first illustration, suppose that the heat-transfer

coefficient in the problem just solved were essentially infinite.

Then the solution of the problem would start as shown in

Table IV.
Table IV

Ta. +o '__x 2AX _3Ax
O 0 1000 loco 1000 1o0o

at 0 0 683 lOCO lo00

2/it 0 0 528 842 1000

Table V

Ta +_0 3AA
0 100 200 300 400

ALt 180 217 3Co 4co

246t ,214 242 308 400



As a second exam;,1e, consider a :emi-inflnite slab having

uniform thermal. properties. Let the exposed surface be insulated,

and let the temperature vary linear'.y with distance from the

exposed surface. The calculations begin as in Table V.
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APPENDIX

In this Appendix detailed derivations are given for the

functions and formulas useful in calculating heat conduction

in a solid near a convective heat-transfer surface.

PROPERTIES OF THE FUNCTIONS Fn(X, t,- 4 ) and G n(x)

The Iterated Error Functions:

The Iterated Error Functions are defined by eqs. 7 and 8.

They are tabulated in refs. 2. From eq. 7 differentiation

gives:

dx
This last relation can be used to give meaning to iterated

functions with indices less than minus one (-l). Thus:
- 4 X = V (41)

The recursion equation satisfied by these functions is 2:

2 " i "e rfc &c) .j "erfe (X) -?Zx j #V e rfc (x) (42)

Equations 7 and 8 can be used to establish the validity of

eq. 42 for all "n".

Definition of Fn(Xvt,

The functions "F n" are defined by the recursion equation:
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F t t~ J (43)
with:

F WLC e1 6:A (44)

Since both F0 and all the (24/Vi)"i"erfc1A*'() satisfy the

heat-conduction equation, it follows that:

?/F, - _L # (45)

Now suppose that, for a moment:

S= - F(46)

then: 7
i epfcc ( J47)

But also: -F 010) e P- C(t 4- J (48)

Therefore: &= F_ (49)

Thus eq. 49 Is true if eq. 46 is true. But likewise, if

eq. 49 is true, eq. 46 can be proved to be true. Finally,

eq. 46 can be directly verified for n = 0. Hence, by induction,

eq. 46 is true in general.

Also, through the use of eqs. 45 and 46, a second useful

relation can be found. Thus:

= - =F - h_. (50dx xi- dt50

Or:

- 1_# w#. i for all "n" (51)

Recursion Formula for the G Functions:

A second type of function appears in the heat-conduction

formulas to be developed. It is defined by:

S(X) - i"./erfc (A) + ,.ertc(-jc) (52)

A complementary set of functions is defined by:

//h~cI i~r~)iefc (53)
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The recursion equation for the Iterated Error Functions easily

gives: 2t' -- Crm-. = -?x H_, (54)

and: 2ti7 h- -._6_ (55)

When values of n from eq. 54 are substituted into eq. 55,

the following recursion equation is obtained for the "G n

Thus: (? 56

The first few functions are given below.

V=•2 = o = 20 R ! 2()

RESPONSE NEAR SOLID SURFACE TO VARIABLE AMBIENT TEMPERATURE

Analytical Solution:

The following problem is solved in ref. 2, p. 297.

"The region x O. Initial temperature f(x). Radiation

(Newtonian cooling) at the surface into medium at Ow."

T = 1 1 ÷ 12 + 13 (57)

where: 00 [-(Ik- P) I X

and: ~ ___

L - eoa

Each of the above three integrals will now be expressed in

terms of the functions F n and .

Evaluation of i

The first of these integrals is handled in precisely the same

manner as was used to evaluate T(O,t) in eqs. 3 to 9. The result
r-

and: I, i ii~f f f

S/ o_ L dxF (61)
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Evaluation of 12:

The qecond integral can be rewritten as:

00
f= T,, /(x +x' (x) d~.4 (62)

(0

O~fFl (gdX, d•c (63)

= hfo~(,A' rf5&' D' (64)

Or: o~-) i x dikJ (.65)

Evaluation of I 3: 0 0

The third integral can also be expressed simply in terms

of the "F" functions. Thus:

t

S-_ 6k, t-r,') 7 - (66)

Or, with the use of eq. 51, one obtains:

13=4  od#&)d (67)0r 0.

SIF+ 94Ir,- 7 6 # dr (68)
0t

[6(oF, 7 ,1 Af t 0#&) dr (70)

The general result is:

DETERMINATION OF THE TEMPERATURE COEFFICIENTS

The final result for T(x,t) is, exclusive of error terms:

TAIt)=• 0o)= -W)' () (2 11*t) 'q),(, ;"F 6
The derivatives9 (72)

The derivatives appearing in eq. 72 can be expressed in terms

of finite differences 3 . If, at time zero, the space distribu-

tion of temperature can be expressed by a second-degree poly-

nomial in "x", and the ambient temperature as a linear function

3 "Numerical Calculus," by W. E. Milne, Princeton University
Press, Princeton, N. J., 1949.
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"of "t", the following expressions apply to the various derivatives'

-T (73)

'o =(+-T,- 3•T T 46 X) (74)

P T+4(75)

)(o0) = (7 7 )) (76)

j A-o -- 7( ) (77)

These expressions are used in this paper, although the result

contained in ea. 72 applies to polynomials of arbitrarily-high

degree.

When the finite-difference expressions 73-77 are sub-

stituted into eq. 72, the coefficients of the various equally-

spaced temperatures can be assembled. For the case where

t = At and x = J( Ax) these coefficients are given in eqs. 28-32

of the text. In presenting these coefficients, it is convenient

to use the dimensionless sequence of functions defined by:

Fn*= F /(Ax)n (78)
n n


